Electronic transport in dual-gated bilayer graphene at large displacement fields.
نویسندگان
چکیده
We study the electronic transport properties of dual-gated bilayer graphene devices. We focus on the regime of low temperatures and high electric displacement fields, where we observe a clear exponential dependence of the resistance as a function of displacement field and density, accompanied by a strong nonlinear behavior in the transport characteristics. The effective transport gap is typically 2 orders of magnitude smaller than the optical band gaps reported by infrared spectroscopy studies. Detailed temperature dependence measurements shed light on the different transport mechanisms in different temperature regimes.
منابع مشابه
Quantum Hall effect, screening, and layer-polarized insulating states in twisted bilayer graphene.
We investigate electronic transport in dual-gated twisted-bilayer graphene. Despite the subnanometer proximity between the layers, we identify independent contributions to the magnetoresistance from the graphene Landau level spectrum of each layer. We demonstrate that the filling factor of each layer can be independently controlled via the dual gates, which we use to induce Landau level crossin...
متن کاملCharge transport in dual gated bilayer graphene with Corbino geometry.
The resistance of dual-gated bilayer graphene is measured as a function of temperature and gating electric fields in the Corbino geometry which precludes edge transport. The temperature-dependent resistance is quantitatively described by a two-channel conductance model including parallel thermal activation and variable range hopping channels, which gives the electric-field-dependent band gap wh...
متن کاملGap state analysis in electric-field-induced band gap for bilayer graphene
The origin of the low current on/off ratio at room temperature in dual-gated bilayer graphene field-effect transistors is considered to be the variable range hopping in gap states. However, the quantitative estimation of gap states has not been conducted. Here, we report the systematic estimation of the energy gap by both quantum capacitance and transport measurements and the density of states ...
متن کاملGraphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.
Graphene is considered to be a promising candidate for future nanoelectronics due to its exceptional electronic properties. Unfortunately, the graphene field-effect transistors (FETs) cannot be turned off effectively due to the absence of a band gap, leading to an on/off current ratio typically around 5 in top-gated graphene FETs. On the other hand, theoretical investigations and optical measur...
متن کاملMolecular doping and band-gap opening of bilayer graphene.
The ability to induce an energy band gap in bilayer graphene is an important development in graphene science and opens up potential applications in electronics and photonics. Here we report the emergence of permanent electronic and optical band gaps in bilayer graphene upon adsorption of π electron containing molecules. Adsorption of n- or p-type dopant molecules on one layer results in an asym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 105 16 شماره
صفحات -
تاریخ انتشار 2010